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Abstract. The COVID-19 trajectories worldwide have shown several surprising features which are outside 

the purview of classical epidemiological models. These include (a) almost constant and low daily case rates 

over extended periods of time, (b) sudden waves emerging from the above solution despite no or minimal 

change in the level of non-pharmaceutical interventions (NPI), and (c) reduction or flattening of case counts 

following relaxation of NPI. To explain these phenomena, we add contact tracing to our recently developed 

cluster seeding and transmission (CST) model. We find no fewer than four effects which make prediction 

of epidemic trajectories uncertain. These are (a) cryptogenic instability, where a small increase in 

population-averaged contact rate causes a large increase in cases, (b) critical mass effect, where a wave 

manifests after weeks of quiescence with no change in parameter values, (c) knife-edge effect, where a small 

change in parameter across a critical value causes a huge change in the response of the system, and (d) 

hysteresis effect, where the timing and not just the strength of a particular NPI determines the subsequent 

behaviour. Despite these effects however, some non-obvious conclusions regarding NPI appear to be 

robust. In particular, (a) narrowing the circle of one’s social interactions can be as effective a measure as 

reducing interactions altogether, and (b) a good contact tracing program can effectively substitute for much 

more invasive measures. Finally, we propose the contact tracing capacity ratio – a metric of the load to 

which the tracers are subject – as a reliable early warning indicator of an imminent epidemic wave. 
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INTRODUCTION 

§1. COVID-19 curves and existing model predictions. The dynamics of COVID-19 trajectories in 

different parts of the world have shown many features which are unexpected from a traditional 

epidemiological viewpoint. “Plateaus” or extended periods of low and nearly constant daily case rate have 

been seen for example in USA (June 2021), UK (April to May 2021), India (January to March 2021), 

Canada (June to August 2020), Germany (May to August 2020), Uruguay (March to November 2020) and 

Taiwan (March 2020 to April 2021). In each case, the quiescent period was shattered by a sudden wave; 

in at least some instances, for example India and Taiwan, non-pharmaceutical interventions (NPI) had 

already been significantly relaxed long before the wave arose and there was no change in public policy 

immediately preceding the wave. In UK, a wave ostensibly driven by the extreme transmissibility of the 

B1.617.2 double mutant (“delta variant”) began in late May 2021; despite this, the government went ahead 

with “Freedom Day” (relaxation of all restrictions) on 19 July 2021, after which the case counts went 

down. This phenomenon was described as “Nobody really knows what’s going on” [1] by a senior scientist 

in a research group which has published dozens of scientific papers on COVID-19 mathematical modeling. 

In India also, following the horrific second wave, B1.617.2 (the dominant strain) remains under control in 

almost all states. However, in parts of USA and Israel, despite high vaccination coverage, the case counts 

are going from bad to worse with the double mutant being the dominant strain and shouldering almost all 

of the blame. 

The prevalence of different mutants with time in India [2] and USA [3] is also interesting. For example, in 

India, the prevalence of B1.617.2 increased rapidly between March and May (the time-frame of the wave), 

as is expected for a highly transmissible strain. The surprise however is that the wildtype virus B1 held on 

to a 10-15 percent market share while the allegedly more transmissible [4] B1.1.7 (“alpha”) mutant became 

reduced to nearly zero prevalence. In USA too, B1.617.2 has proliferated rapidly between May and today; 

once again wildtype has clung to a steady non-zero prevalence while B1.1.7 has been all but knocked out 

of the competition. 

In Ref. [5] we have proposed a lumped parameter or compartmental model based on delay differential 

equation (DDE) which we believe is superior to other existing compartmental models, for reasons 

elaborated therein. Even this model however cannot explain any of the above ‘anomalies’. A plateau is a 

non-generic solution and, for a given infection level, occurs only in a set of measure zero in the parameter 

space. Sudden waves can only be generated by sudden changes in parameters, which correspond to sudden 

lifting of NPI. While some of the waves were directly linked to relaxations or COVID-inappropriate 

behaviour (for example, the massive third wave in USA was linked to travel and festivities during the 

Thanksgiving-Christmas-New Year season), others, as we have already mentioned, occurred without any 

such obvious trigger. This latter is completely outside the purview of lumped parameter models. Behaviour 

of mutants in compartmental models is very simple – a more transmissible mutant always dominates a less 

transmissible one, irrespective of whether cases are increasing or decreasing. 

§2. Cluster seeding and transmission (CST) model – prior work. To address the issue of the plateau 

solution and the sudden waves, we have proposed a novel cluster-based mathematical model of disease 

transmission in Ref. [6] and used it in Ref. [7] to perform a detailed analysis of the origins of the devastating 

second wave in India. These two studies together with Ref. [5] also summarize the state of the art in 

mathematical modeling of COVID-19 and we refer to these for a detailed review of literature which can 

set the present Article in a more extensive context. An unstated or at best understated assumption at the 

heart of all lumped parameter models is that of homogeneous mixing – the assumption that any random 

person has equal probability of interacting with, and hence transmitting the virus to, any other random 

person taken from the entire population. In our cluster-based model we have gone with the more realistic 

assumption that a person is more likely (perhaps by order of magnitude) to interact with (and consequently 

infect) family members and friends than strangers. We have expressed this by dividing the population into 

clusters or small groups of people with dense links among each other and few or no links outside. Intra-

cluster transmission of virus is certain and rapid. Inter-cluster transmission is rarer and (as per the model 

assumptions) can occur in two ways. These are unintentional cluster transition or UCT events which 
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involve accidental transmission in public places, and socializing external to cluster or SEC events where 

people from different clusters intentionally get together. By calculating the various transmission 

probabilities, we have arrived at a computational model for the spread of the disease.  

We now give a brief description of CST model. Time is discrete and is measured in days. The variables 

and parameters are as follows (Table adapted from Ref. [6]). The default values are those used in Ref. [6] 

to generate a plateau solution, and carry over to this Article with a few exceptions to be mentioned as 

appropriate. 

Variable Significance 

yi Cumulative number of socially active cases upto and excluding day #i 

Δyi Number of new socially active cases cropping up on day #i 

zi Cumulative number of insusceptible clusters upto and excluding day #i 

Δzi Number of new clusters turning insusceptible on day #i 

fi Cumulative number of cautious household cases upto and excluding day #i 

Δfi Number of new cautious household cases cropping up on day #i 

 

Parameter Significance Default value 

N Total population 3,02,400  

h Household size 3  

N1 Socially active population 1,00,800 

NC Number of clusters 4200 

s Size of the cluster 24 

v Cluster sequence [1; 3; 6; 7; 5; 1] 

Ts Serial interval 5 days 

nU Number of people participating 

daily in UCT events 

10,000 

PU Probability of transmission in a 

UCT event 

0·15 

nS Number of people participating 

daily in SEC events 

— 

mS Number of people infected by 

one case at a SEC event 

2 

— Time between exposure and start 

of transmissibility for all cases 

5 days 

— Duration for which all cases 

transmit to others 

3 days 

Table 1 : Variables and parameters in the basic CST model. Large parts of this Table are reproduced verbatim from 

Ref. [6]. We do not assign a default value to nS (it was zero in Ref. [6]) since it will be varied incessantly in the bulk of 

this Article. 

 

We count a person as a case on the day s/he first turns transmissible. Since we assume homogeneous 

mixing among clusters (rather than individuals), the domain of validity of the model is a city rather than a 

state or a country. Considering a city of total N people, we have partioned them into N1 ‘socially active’ 

people who can contract the disease on their own and N − N1 ‘householders’ who can contract the disease 

only from a socially active individual. We have then divided the N1 active people into NC clusters of equal 

size s. When a cluster is seeded, i.e. when the first member of a cluster with all susceptible persons is 

exposed to an infective dose of the pathogen, we assume that cases crop up in the cluster over the next few 

days following a fixed, definite sequence. This sequence approximately captures the reproduction number 

R0 of the disease (R is the number of secondary transmissions from one infected individual, and R0 is its 

initial value when everyone is susceptible) and the serial interval (the time between primary and secondary 

case). The last two rows of Table 1 indicate our assumption that all cases turn transmissible 5 days following 
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exposure and remain transmissible and at large for 3 days (after this duration, asymptomatic cases recover 

while symptomatic ones show their symptoms and go into quarantine). We shall in general continue using 

the same values here. 

In the basic CST model, we have found two non-classical effects which are of considerable interest – the 

cryptogenic instability where an increase in nS causes a disproportionate rise in case count relative to the 

increase in population-averaged interaction rate, and the critical mass effect where, for the same parameter 

values, a very small initial condition results in a containment solution whereas a slightly larger initial 

condition causes a huge wave. 

§3. Objective of this study. While Ref. [6] went a long way towards our understanding of COVID-

19 trajectories, it suffered from an important limitation. This was that the model did not incorporate testing, 

tracing and quarantining of cases. This is a very important public health measure which can significantly 

influence the case trajectories. For this reason, Ref. [6] also did not go too much into the details of applying 

NPI to mitigate the epidemic. 

In this work, we address these drawbacks. We formulate the CST model with contact tracing in §4-5, 

present the novel effects in §6, and discuss them in detail in §7. In §8 we turn to the limitations of the 

model, highlighting features which are expected to remain robust when the assumptions and 

approximations are relaxed. In §9 we propose an early warning indicator of an imminent wave, and in §10 

we briefly mention the public health implications of our findings. We then wrap things up with a 

conclusion. 

---- o ---- 

 

MATHEMATICAL MODEL 

§4. Implementation of contact tracing. Before starting the discussion, we get one assumption out of 

the way. This is that our model does not incorporate vaccination. A detailed analysis of this intervention 

is appropriate for a future, separate study while an approximate estimate of its effect can be obtained simply 

by considering a fraction (vaccinated percentage times vaccine efficacy) of the population to be pre-

immune.  

Contact tracing refers to the process in which, when a case is detected, the people with whom s/he has 

interacted recently are identified and recommended to isolate for a few days so as to prevent further spread 

of infection. Here we make two fundamental assumptions regarding the tracing process : 

• There is forward contact tracing only, starting from symptomatic cases. This means that when a 

symptomatic case with unknown source of exposure tests positive, the authorities attempt to identify 

all of his/her potential secondary cases, but do not attempt to identify the source of exposure and 

other secondary contacts thereof. We also assume that there is no random testing of asymptomatic 

persons. 

• The process timings involved are such as to ensure that cases who are successfully caught by the 

contact tracers are sent into quarantine during their non-transmissible incubation period, i.e. traced 

cases transmit the disease to no one else. 

A toy example will help to clarify the implications of the above assumptions. For this example we ignore 

the cluster structure of the population. Let us say Alfa is an asymptomatic case who transmits the virus to 

Bravo and Charlie on day #0. On day #5, both of them turn transmissible – Bravo transmits to Delta while 

Charlie to Echo and Foxtrot, all on the same day. Bravo remains asymptomatic while on day #8, Charlie 

turns symptomatic, reports to the authorities and tests positive. By the first assumption, Echo and Foxtrot 

are rounded up by the contract tracers but there is no attempt to track down Alfa. As a result of this lapse 

Bravo remains undetected as well, and so does Delta. Charlie’s secondary cases Echo and Foxtrot turn 

transmissible on day #10; the second assumption implies that they are successfully captured within day 
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#9. This discussion might appear a little unwieldy so we show the transmission sequence in a schematic 

form below. 

 

Figure 1 : Timeline of different cases in the hypothetical example to demonstrate the contact tracing assumptions. 

Squares denote individual persons. Yellow means exposed but not transmissible, red means transmissible while green 

means recovered. The grey vertical lines indicate transition of one person from one state to another while red horizontal 

lines denote transmission of the disease from person to person. The 5- and 3-day intervals between exposure and 

infectiousness, and infectiousness and recovery are consistent with the basic CST model assumptions. Note how the 

two assumptions regarding contact tracing result in capture of Echo and Foxtrot before they turn transmissible while 

failing to trace the Bravo-Delta branch of the transmission. 

 

Thus we can see that the two assumptions introduce errors in opposite senses. A more sophisticated contact 

tracing system can achieve backward tracing (catching Alfa from Charlie and hence Bravo and Delta from 

Alfa) while a slowly functioning system with delays in testing etc can result in secondary cases not being 

caught before starting spread. 

The second assumption allows us to define exactly two classes of cases – at large cases, who spend three 

full days spreading virus just as in Ref. [6] and quarantined cases who spend zero days infecting others. We 

now account for the presence of social clusters in a realistic manner. Let P0 be the probability that a random 

case is symptomatic, and Q0 = 1−P0 the probability that s/he is asymptomatic. We assume that when a 

symptomatic case reports to the authorities, the entire cluster to which s/he belongs is successfully 

identified with probability P1 and missed with probability 1 − P1. Further, UCT and SEC transmissions 

which this case has caused are identified with probabilities P2 and P3 respectively.  

We use an example rather than a general theoretical discussion to understand how contact tracing will 

work on a cluster, noting that the example is very easy to generalize. For this example, we use the cluster 

sequence [1; 3; 6; 8; 5; 1] which shall also feature in very many of the simulation runs. This sequence is 

adapted from Table 1, with the reason for the change coming below. All clusters are first seeded via UCT 

or SEC events; again for definiteness, let us focus on the former. Let the example cluster be named Team, 

let it consist of persons Alfa through Xray (total 24) and let the at large case Yankee be the one who exposes 

Alfa to the pathogen in a UCT event. In the absence of contact tracing, the cluster sequence implies that 

• Alfa (1 case) is exposed by Yankee on day #0 and turns into a case on day #5 

• Bravo, Charlie and Delta (3 more cases) are exposed by Alfa and turn into cases on day #10 

• Echo through Juliett (6 more cases) are exposed by one or more of Bravo through Delta and turn 

into cases on day #15 
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• Kilo through Romeo (8 more cases) are exposed by one or more of Echo through Juliett and turn 

into cases on day #20  

• Sierra through Whiskey (5 more cases) are exposed by one or more of Kilo through Romeo and turn 

into cases on day #25 

• Xray (1 more case) is exposed by one or more of Sierra through Whiskey and turns into a case on 

day #30 

Now incorporate contract tracing on Team. There is a probability P0 that Yankee is symptomatic and Q0 

that he is asymptomatic. In the latter case, there is no hope of catching Alfa; in the former case, there is a 

probability P2 that Alfa is identified by the contact tracers and sent into quarantine. If this happens, then 

the only case in Team is Alfa, who is quarantined at the get-go. In such a situation, we classify Team as a 

cluster of Type 1. The probability that Team, and by extension any other cluster, is of Type 1 is thus P0P2. 

If Yankee is asymptomatic (probability 1 − P0) or if he is symptomatic (P0) but the tracers fail to identify 

Alfa as his secondary UCT case (1 − P2), then Alfa becomes an at large case. The probability of this 

happening is 1 − P0 + P0 (1 − P2) which is 1 − P0P2. Then, Alfa transmits the virus to Bravo, Charlie and Delta 

and also participates in UCT and SEC events. Now, consider the case that Alfa is symptomatic (P0). If yes, 

the contact tracers get to work and, with probability P1, capture the entire cluster Team including Bravo, 

Charlie and Delta. Assume the complement 1 − P1 to denote a tracing error or roadblock where the 

opportunity to catch Team is irreversibly lost. The tracers also capture Alfa’s UCT and SEC transmissions 

with probabilities P2 and P3. Captures of UCT and SEC transmissions by members of Team are however 

accounted for while implementing contact tracing on the secondary clusters, just as we have factored in 

Yankee while doing the calculation for Team. Hence, for analysing Team, they do not require our further 

consideration. Bravo, Charlie and Delta contract the infection in quarantine and further spread of the 

disease within Team is halted. In this situation, we call Team a cluster of Type 2. The probability of this 

occurring is (1 − P0P2) P0P1.  

If Alfa is asymptomatic however (Q0), then Bravo through Delta perforce become at large cases, 

transmitting the virus to the next level in the cluster i.e. to Echo through Juliett (and also participating in 

UCT and SEC). Any and all of Bravo through Delta might be symptomatic or asymptomatic – if at least 

one is symptomatic (1 − Q0
3, the complement of the probability that all three are asymptomatic) then Team 

is grounded at this stage with probability P1. Echo through Juliett become quarantined cases and we classify 

Team as Type 3. The probability of this occurring is (1 − P0P2) Q0 (1 − Q0
3) P1.  

Similarly, if everyone upto Delta is asymptomatic (Q0
4) but at least one among Echo through Juliett is 

symptomatic (1 − Q0
6), then all 10 of these become at large cases, while Kilo through Romeo are exposed 

but quarantined before they turn infectious. We call Team a cluster of Type 4, and the probability of its 

occurrence is (1 − P0P2) Q0
4

 (1 − Q0
6) P1. The probability that everyone from Alfa to Juliett is asymptomatic 

is minuscule and we take it as zero. Thus, we define the Type 5 cluster to be the one where contact tracing 

has no effect at all i.e. all cases remain at large. The probability of its occurrence is 1 minus all the above 

probabilities put together. A picture might well be worth the last 500 or so words, so we present the 

probability tree below as Fig. 2 and also the case burdens associated with the various cluster types as Table 

2. In a similar manner we can account for the probabilities of occurrence of the five types of clusters via 

SEC events. For this, we replace P2 by P3 in the expressions obtained above. 
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Figure 2 : Probability tree showing how Team can end up being a cluster of Types 1 through 5. “Asymp” and “symp” 

stand for asymptomatic and symptomatic, “loose” means at large and “gnd” or grounded denotes quarantined. “Cluster 

lost” means that the tracers fail to track down Team i.e. it becomes a cluster of Type 5. The probabilities associated 

with each event are shown alongside the vertical arrows leading to the event; Qn is shorthand for 1 − Pn and certainties 

are marked as 1 for consistency. If deriving (1) from this diagram, note that Q0 + P0Q2 = 1 − P0P2. 

 

Type 1 2 3 4 5 

At large 0 1 4 10 24 

Quarantined 1 3 6 8 0 

Table 2 : Total numbers of at large and quarantined cases arising from clusters of the five fundamental types. 
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Given these probabilities, we now describe the modifications which must be made to the computational 

procedure Algorithm 1 of Ref. [6]. Firstly, we define extra variables xi and Δxi, the cumulative respectively 

daily counts of at large cases on day #i and qi and Δqi, the same for quarantined cases. The total number of 

socially active cases become yi = xi + qi and Δyi = Δxi + Δqi. The Subroutine roundoff in Algorithm 1 of Ref. 

[6], which replaces a fraction by its nearest integer and carries over the error, remains as it is. In the main 

routine, we redefine the total number of at large cases α present on day #i to be Δxi−1 + Δxi−2 + Δxi−3. The 

calculation of expectation number EU of susceptible clusters seeded via UCT on day #i remains unchanged 

from Ref. [6]. This is because contact tracing does not affect the parameters other than α which go into 

determining EU. Then, we introduce the probabilities obtained above for the seeded clusters belonging to 

Types 1 through 5. These probabilities, in summary form, are 

 0 2(1)UP P P=    , (1a) 

 ( )0 2 0 1(2) 1UP P P P P= −    , (1b) 

 ( ) ( )30 2 0 0 1(3) 1 1UP P P Q Q P= − −    , (1c) 

 ( ) ( )4 6
0 2 0 0 1(4) 1 1UP P P Q Q P= − −    , (1d) 

 (5) 1 (1) (2) (3) (4)U U U U UP P P P P= − − − −    . (1e) 

Then, the expectation number of susceptible clusters of type j seeded during UCT events becomes EUPU(j). 

Analogously we calculate the expectation number ES (j) of susceptible clusters of various types seeded om 

day #i during SEC events, by replacing P2 with P3 in the expressions above. Adding the two together gives 

us the expectation numbers E(j) of the five types of clusters seeded on day #i. The sum E = E(1) + E(2) + 

E(3) + E(4) + E(5) gives the total expectation number of clusters seeded on this day. In Ref. [6] we 

straightaway rounded this off to get the actual (integer) number of clusters seeded. Here however, there is 

one more thing to take care of, which is the maximum contact tracing capacity CTmax. 

Identification and isolation of a cluster entails tracking down 24 people and issuing quarantine 

recommendations to all of them. This is time- and resource-consuming work, and needs dedicated 

personnel. It is reasonable to expect that the city will have an upper limit on the number of contact tracers 

and hence a ceiling on the number of people who can be tracked down in a day. We call this ceiling CTmax. 

Now we need an estimate of the number of people required to be traced every day. Generating a cluster of 

Types 2 through 4 requires identifying 24 people; the count required to generate a cluster of Type 1 is harder 

to calculate since it involves identifying UCT and SEC transmissions rather than cluster isolation. 

Nevertheless, for calculational convenience, we can assume approximately that this process involves 

tracing 24 people also. Generating a Type 5 cluster of course does not require any contact tracing at all. 

Putting this together, the number of people required to be traced on day #i is  

 ( ) ( )24 (1) (2) (3) (4) 24 (5)CTn E E E E E E= + + + = −    . (2) 

If nCT ≤ CTmax, then the calculated E(j)’s for day #i are feasible to generate. If this inequality is violated 

however, then the calculated E(j)’s are impossible. 

In this case, we define the capacity ratio ρ = CTmax/nCT and rescale the expectation numbers of contact 

traced clusters by ρ i.e. we replace E(j) = ρE(j) for j goes from 1 through 4. This rescaling ensures that the 

total number of contact tracings made on day #i becomes equal to CTmax instead of exceeding it, while the 

relative proportions of Types 1 through 4 clusters remain unchanged. To make the rescaling consistent, we 

define ρ = 1 in the case that nCT ≤ CTmax. The total number E of clusters seeded on day #i cannot depend on 

the contact tracers’ ability to find these clusters, since the finding happens only after day #i. Hence E itself 

is independent of ρ and the adjusted E(5) is calculated as E less the rescaled E(1) through E(4). Only now 

do we perform the roundoff to calculate the integer numbers ( )j
iz  of susceptible clusters of type j seeded 

on day #i. 

Another difference from Ref. [6] occurs in the removal of immune clusters. In Ref. [6] we treated entire 

clusters as susceptible or immune – this was essential to prevent over- or undercounting while ensuring 

tractability of the mathematical expressions. Here, different types of clusters generate different numbers of 
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susceptible and immune people at the end of the cluster-level outbreak (Type 1 has 23 susceptible and 1 

immune, Type 2 has 20 susceptible and 4 immune etc), and treating such clusters as a whole as immune 

(or susceptible) will lead to unacceptable levels of error. To get around this, we use an approximation 

scheme where the error involved is less. We let wi and Δwi (equivalent of zi and Δzi of Ref. [6]) denote the 

effective numbers of immune clusters. Whenever a Type 5 cluster is generated, we increase Δwi by one, just 

as in Ref. [6]. For the other cluster types, whenever total 24 additional immune people are generated, we 

increase Δwi by one. This scheme ensures that the infection can mathematically spread to the entire 

population, neither stopping short nor overshooting. Here, we explain why we opted for [1; 3; 6; 8; 5; 1] as 

the cluster sequence instead of [1; 3; 6; 7; 5; 1] of Ref. [6]. This is because, with this sequence, a Type 5 

cluster infects everybody inside and is consistent with our heuristic susceptible cluster calculation scheme, 

whereas the one remaining susceptible person with the original sequence causes a needless headache at this 

step.  

A final point of difference from Ref. [6] occurs in the treatment of the household cases. In Ref. [6], all 

socially active cases generate two additional household cases. Here, all at large cases will generate the two 

additional household cases but quarantined cases will not spawn this extra caseload. 

§5. Computer algorithm. We now list the additional variables and parameters present in the model 

with respect to Ref. [6], and give the algorithm for calculating the case trajectories. In the algorithm, we 

condense those parts which have already appeared in Algorithm 1 of Ref. [6]. 

Variable Significance 

xi, Δxi Cumulative respectively daily counts of at large cases cropping up on day #i 

qi, Δqi Cumulative respectively daily counts of quarantined cases cropping up on day #i 

wi, Δwi Cumulative respectively daily counts of effectively immunized clusters cropping up 

on day #i. Replaces zi and Δzi of Ref. [6]. 

 

Parameter Significance Default value 

P0 Probability of random case being 

symptomatic 

0·5 

P1 Probability of grounding a 

cluster upon finding a 

symptomatic case 

0·8 

P2 Probability of identifying a 

symptomatic case’s UCT 

secondary transmissions 

0 

P3 Probability of identifying a 

symptomatic case’s SEC 

transmissions 

0·2 

CTmax The maximum number of people 

whom the contact tracers can 

track down every day 

50 

Table 3 : New variables and parameters arising when contact tracing is added to the basic CST model.  

 

We have chosen a relatively high default value for P1 since clusters are composed of close contacts and 

these are relatively easy to trace. We have gone with zero as the default for P2 since UCT events like 

transmission on board buses and inside marketplaces are almost impossible to identify in practice. For P3 

we have gone with a low default value since SEC transmissions, for example at wedding and birthday 

parties are harder to identify than intra-cluster transmissions but easier than transmissions in random public 

places.  
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We now give the algorithm itself. The algorithm is schematic and is not cast in any particular computer 

language; our code written in Matlab is freely available as discussed in the Declarations Section at the end 

of this Article. 

Subroutine roundoff 
Carry over from Ref. [6] 

Main Routine 
Starting steps 

Step 1 Set parameters, initialize all variables with zero values 
Step 2 for j goes from 1 to 5 

     Calculate PU(j) 
     Calculate PS(j) 
end 

Step 3 Set initial conditions to seed the system 
Primary loop over i 

Step 1 Define α = Δxi-1+Δxi-2+Δxi-3 
    Break loop if α = 0 beyond the seeding phase 

Step 2 Calculate EU as in Ref. [6], use w in place of z 
Step 3 for j goes from 1 to 5 

     Calculate EU(j) = PU(j)EU 
end 

Step 4 Calculate ES as in Ref. [6], use w in place of z 
Step 5 for j goes from 1 to 5 

    Calculate ES(j) = PS(j)ES(j) 
end 

Step 6 for j goes from 1 to 5 
    Calculate E(j) = EU(j)+ES(j) 
end 
Define E = E(1)+E(2)+E(3)+E(4)+E(5) 

Step 7 Calculate nCT = 24(E-E(5)) 
Step 8 if nCT>CTmax 

    Define ρ = CTmax/nCT 
else 
    Define ρ = 1 
end 
for j goes from 1 to 4 
    Set E(j) = ρE(j) 
end 
Set E(5) = E-E(1)-E(2)-E(3)-E(4) 

Step 9 for j goes from 1 to 5 
    Define Δzi(j) = roundoff(E(j)) 
end 

Step 10 Set 
    Δxi+5 = Δxi+5+(Δzi(2)+Δzi(3)+Δzi(4)+Δzi(5))v(1) 
    Δxi+10 = Δxi+10+(Δzi(3)+Δzi(4)+Δzi(5))v(2) 
    Δxi+15 = Δxi+15+(Δzi(4)+Δzi(5))v(3) 
    Δxi+20 = Δxi+20+Δzi(5)v(4) 
    Δxi+25 = Δxi+25+Δzi(5)v(5) 
    Δxi+30 = Δxi+30+Δzi(5)v(6) 

Step 11 Set 
    Δqi+5 = Δqi+5+ Δzi(1)v(1) 
    Δqi+10 = Δqi+10+Δzi(2)v(2) 

contd. 
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    Δqi+15 = Δqi+15+Δzi(3)v(3) 
    Δqi+20 = Δqi+20+Δzi(4)v(4) 

Step 12 Define Δyi = Δxi+Δqi     
Step 13 Define 

    imm = (Δzi(1)+4Δzi(2)+10Δzi(3)+18Δzi(4)) 
    s1 = imm mod 24 
    Δwi = Δzi(5)+(imm-s1)/24 
    s2 = s2+s1 
    if s2≥24 
        s2 = s2-24 
        Δwi = Δwi+1 
    end 

Step 14 Set 
    xi+1 = xi+Δxi 
    qi+1 = qi+Δqi 
    yi+1 = yi+Δyi 
    wi+1 = wi+Δwi 

Final steps 
Step 1 Define 

    Δfi+5 = 2Δxi 
    fi+5 = 2xi     

Step 2 Prepare relevant plots 
Algorithm 1 : Schematic representation of the routine used to compute case trajectories. Note that v denotes the cluster 

vector, which is [1; 3; 6; 8; 5; 1] in many of the runs used here. imm in Step 13 of the primary loop counts immune 

population. The numbers 1, 4, 10 and 18 appearing in Step 13 might be replaced by v(1), v(1)+v(2), etc for greater 

generality.  

 

As in Ref. [6], we introduce the parameter kmax for convenience and set its value to 80. We use the initial 

condition that eight clusters are seeded on the first day, after which the disease evolves on its own. 

---- o ---- 

 

RESULTS 

§6. Complex effects in the model. In Ref. [6] we have already shown that the basic CST model has 

a plateau (i.e. extended period of nearly constant daily case rate) as a generic solution. We have also shown 

the cryptogenic instability where an increase in nS causes the epidemic to increase very rapidly in severity, 

even though the contribution of the SEC events to the population-averaged contact rate remains quite 

small. In Fig. 3 we present a more detailed characterization of this instability beyond what was done in 

Ref. [6]. Considering the default values of Table 1 and no contact tracing, we vary nS and plot two things : 

(a) the cumulative caseload at the end of the outbreak, and (b) the total duration of the outbreak. We show 

the caseload as a blue line associated with the left hand y-axis and the duration as a green line associated 

with the right hand y-axis. The actual points where we have run Algorithm 1 are shown as squares; the 

continuous lines are generated from them via interpolation using Matlab’s “makima” routine. These 

conventions shall continue to hold for all Figures where we perform parameter sweeps. 



 
12 

 

 

Figure 3 : Cumulative caseload and duration as nS is varied with all other parameters set to default values. The symbol 

‘k’ denotes thousand and ‘L’ lakh or hundred thousand. 

 

We can see that the caseload initially increases rapidly with increase in nS, and thereafter the rate of increase 

becomes lower.  

In Ref. [6] we had identified another non-classical effect called critical mass effect. This refers to the fact 

that even when the parameter values are chosen to generate a wave, a sufficiently small initial condition 

results in the epidemic terminating quickly and at very few cases. We had demonstrated this effect in Fig. 

4 of Ref. [6]. With the contact tracing included, we find that this effect is reinforced. For example, using 

the default values of Tables 1 and 2 and the value nS = 1800, we get the following epidemic curve, Fig. 4. 

We show the daily case rate as grey bars. 

 

Figure 4 : Time trace of the epidemic showing the critical mass effect. 

 

We highlight that this entire trajectory – with a nearly constant case rate from 40 to 130 days and a gigantic 

wave after 150 days – has been generated with parameters kept invariant throughout. Thus, the parameter 

values are clearly chosen to result in uncontrolled disease transmission; even so however, the epidemic 

continues at a simmering level for a very long time before the explosion occurs. This is the enhancement 

of the critical mass effect which takes place when contact tracing is added to the basic CST model. The 
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effect is no longer dependent on the initial condition’s being sufficiently small but occurs much more 

generally.  

For the next effect, we perform some parameter sweeps. Taking the default values from Tables 1 and 3 for 

all but one parameter, we vary this last remaining parameter from a low to a high value and plot the 

cumulative caseload and duration as in Fig. 3. 
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Figure 5 : Cumulative caseload (blue) and duration (green) of the epidemic as the labelled parameter is varied and all 

other parameters held to their default values. The symbol ‘k’ denotes thousand and ‘L’ lakh or hundred thousand. 

 

In each plot we can see a step-function behaviour especially in caseload – at first it changes very gradually 

as the parameter is increased before abruptly showing a very sharp rise or drop at some critical value of the 

parameter. After this sudden transition, the variation is again gradual. On the happy side of this transition, 
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the time trace of the epidemic is a plateau while on the unhappy side it is a wave. Note that, on this wrong 

side of the transition, the epidemic proceeds to herd immunity. Thus, a knife-edge separates the tractable 

solutions from the intractable ones, and we call this phenomenon the knife-edge effect. 

For the last effect, we consider time-varying parameters. We can see in Fig. 5-top that, with all other 

parameters set to default values, nS = 1900 leads to an explosion while nS = 1500 leads to controlled 

outbreak. Accordingly, a minimally invasive mitigation measure might involve reducing nS from 1900 to 

1500 after the outbreak is initiated. The results of this move, with the reduction implemented at day #100, 

are shown in Fig. 6-top; the results of a similar but more drastic reduction – nS slashed to 300 instead of 

1500 – are shown in Fig. 6-bot. In these and similar Figures, we show the daily case count as grey bars 

attaching to the left-hand y-axis and the cumulative caseload as blue line associated with the right hand y-

axis. 

Figure 6 : Top panel shows the effects of reducing nS from 1900 to 1500 while bottom panel shows the effects of 

reducing it to 300. In both cases, the intervention is applied at 100 days, indicated by the red line. The symbol ‘k’ 

denotes thousand and ‘L’ lakh or hundred thousand. 

 

We can see that the weak intervention, although strong enough to prevent a serious outbreak if applied at 

the outset, has precisely zero effect when applied at a later stage. Acting later, a much stronger mitigation 

measure is necessary to bring the spiralling outbreak back under control. 
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To take another example, we start off as in Fig. 6, and consider the intervention of changing CTmax rather 

than nS. We implement a step increase from the value 50 to the value 400. The two panels of the below 

Figure show this intervention being applied at 120, respectively 100 days. 

 

Figure 7 : Effect of increasing CTmax from 50 to 400 at day #120 (top panel) and #100 (bottom panel). In both cases the 

intervention is depicted as a red line. ‘k’ denotes thousand and ‘L’ lakh or hundred thousand. 

 

When applied at the 120-day mark, the intervention has little effect – the cases climb rapidly even after the 

measure is applied, peaking approximately 60 days after the change in policy. The effect of the measure is 

not zero since the cumulative count of approximately 1·5 lakh cases is less than the 2·5 lakh which would 

have accumulated in the absence of the intervention. There is a dramatic change however when the timing 

of the intervention is brought forward by 20 days. This time the cases peak about 20 days after the 

intervention, which is consistent with the time it takes for the infection to sweep through the clusters already 

seeded prior to the intervention. Thereafter however, the cases decrease slowly until the outbreak ends.  

In both these Figures, we can see that the trajectory of the epidemic following an intervention depends not 

only on the strength of the intervention but also on the trajectory prior to the intervention. In a physical 

system, this phenomenon where the past state of the system influences its present behaviour is called 

hysteresis. The most famous example is magnetic hysteresis while similar behaviour in the forced Duffing 
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oscillator and other nonlinear systems is also pretty well-known. In the context of our epidemic model, we 

call this the hysteresis effect. 

---- o ---- 

 

DISCUSSION 

§7. Discussion of the various effects. We take the effects in the order presented. We have already 

spent considerable time on the cryptogenic instability in Refs. [6,7] so our treatment here will be brief. In 

Fig. 3, at the point nS = 1000, the contribution of the SEC events to the population-averaged interaction 

rate is only 1 percent of the contribution of intra-cluster interactions; yet, the caseload in this situation is 

increased by six times. The average contact rate is a very important parameter in lumped parameter or 

compartmental models and a 1 percent increment in its value cannot cause such a huge increase in cases.  

Critical mass effect in the CST model without contact tracing has also been identified in Refs. [6,7]. The 

tracing however is responsible for enhancing it substantially. In the absence of tracing, for the same 

parameter values we can get either an isolated handful of cases (for a small initial condition) or a full-blown 

wave (for a larger initial condition) but not both in series. With the tracing included however, Fig. 4 shows 

just such a solution and, as already mentioned in §1, it is a hallmark of COVID-19 trajectories round the 

world. We can also see that critical mass effect can result in a wave occurring months after a relaxation, 

when nobody is expecting trouble, as happened in India, Taiwan and elsewhere.  

The qualitative reasoning behind the solution of Fig. 4 is as follows. Firstly, we note that contact tracing 

dramatically reduces the number of at large cases. With P0 to P3 at their Table 3 defaults, excluding the 

chance that a cluster is caught at seeding itself, there is a 24 percent probability that the cluster develops 

just one at large case and another 21 percent probability that it develops four at large cases, instead of 24. 

Now, in Fig. 4, the parameter values happen to be chosen in such a way as to generate a plateau if the 

contact tracers can access every emerging symptomatic case (note that the ‘if’ condition is not actually 

satisfied by the situation at hand). After the seeding period (first 40 days), the number of fresh cases 

occurring per day is such as to stretch the tracing capacity to its limit or very slightly beyond. Thus, for a 

long time, nearly all feasible cases are traced and the plateau continues with a very slight increasing trend 

(visible when zoomed up, which will come later). The plateau is not perfectly smooth but consists of 

fluctuations about a constant envelope. The increasing trend means that, as time goes on, days of locally 

high cases definitely seed more clusters than the tracers can access and isolate. These untraced clusters in 

turn start supplying considerable numbers of at large cases. Now however we enter a vicious circle, for 

more at large cases with constant contact tracing capacity means yet more untraced clusters and at large 

cases. This vicious circle manifests as the sudden wave. Thus we can say that the emergence of the wave is 

the result of a feedback process between the contact tracing and the case trajectory itself.  

Qualitatively, this destabilization of the plateau by itself is somewhat similar to the phenomenon of 

autoparametric resonance in mechanical systems [8] where the motion itself activates the instability which 

destroys it. We have observed that increasing nS above the value used in Fig. 4 results in the duration of 

the preliminary plateau phase reducing rapidly. This is consistent with our explanation since higher nS 

saturates the contact tracing system and leads to the vicious circle faster. A mathematically rigorous 

analysis of the critical mass effect in the epidemic model is left by us for future study. For now, the 

important thing is that the critical mass effect has played a key role in affecting the COVID-19 epidemic 

trajectories worldwide. It is at best a thorn in the side and at worst a nemesis of public health planners, 

since, right until the wave occurs, there is scant evidence to suggest that it is imminent and that an increase 

in NPI or compliance therewith is urgently called for. 

Like the critical mass effect, knife-edge effect confounds the efforts of epidemic predictors and planners. 

The risk here is that the transition from tractable (plateau) to intractable (wave) behaviour is nearly 

instantaneous, and the qualitative behaviour on either side of the knife-edge is the same. Hence, if a region 

is operating in plateau mode with a certain level of NPI, it is impossible to guess how much further NPI 
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relaxation is possible without the plateau being destabilized. Incremental relaxation – a policy used almost 

worldwide during the initial exit from lockdown – will scarcely produce results until the knife-edge is 

actually hit, when the consequences will become drastic. This effect is similar to phase transitions in 

fundamental physical as well as in more applied processes [9-12], of which our model can be considered a 

certain type. Once again, the mathematical intricacies and parallels with other branches of science must be 

allocated the loop line for now, with preference going to the ramifications of the effect on COVID-19 

explanation and prediction. We believe that the unexpected undulations in caseload, in for example Fig. 

5-top for nS > 1800, are the result of a numerical error and not significant. 

The hysteresis effect is almost self-explanatory, so we proceed straight to a real-world example. The state 

of Maharashtra in India, including its two primary case-driver cities Mumbai and Pune, is an excellent 

demonstrator of this effect. During January and February 2021, cases in these cities were constant or 

decreasing even though NPI were not very stringent (there weren’t too many restrictions in place beyond 

a mask mandate and size cap on gatherings, and even these weren’t being followed too strictly). When the 

wave arose, the reproduction number R was relatively low [7] and the State Government initially tried a 

soft intervention approach such as imposing night curfews and increasing mask compliance. As per 

compartmental epidemic models, this alone should have worked – if R was below unity in January at a 

certain level of NPI, then reverting to that level of NPI in March should have brought it below unity again 

and stemmed the growth of cases. This however was not what happened – the daily case counts grew 

relentlessly and only when a full lockdown was imposed did they start going down again. Hysteresis effect 

can explain this observation completely. 

All of these effects combine together to explain the bewildering variety of COVID-19 trajectories seen all 

over the world. Anomalously high case counts, for example in USA and Israel, might indicate the crossing 

of a knife-edge during the relaxation process or an ineffective contact tracing system while anomalously 

low counts, for example in India and UK, might indicate a better contact tracing system and operation on 

the bright side of a knife-edge. (A recent claim [13] of India’s having reached herd immunity with 90 crore 

infections as of 30 June 2021 is based on imaginary and not real data, and a model named ‘SEIR-fansy’; 

this nomenclature is singularly appropriate.) The complex effects underlying corona trajectories might also 

influence analyses of transmissibility of mutants, especially when this analysis is done with respect to a 

compartmental model. For example, the transmissibility of B1.1.7 variant appears to have been 

overestimated since it was eliminated in competition while wildtype survived. While B1.617.2 is definitely 

more transmissible than other variants, some accounts of its infectiousness (for example, it is like the 

chickenpox [14], it has an R0 upto 8 [15]) might be exaggerated (recall that not every country where this 

variant is prevalent is reeling under its attack). This will be especially true is the serial interval for this 

variant turns out to be lower than for the other variants, which one study [16] suggests to be the case. The 

epidemic doubling time Td during exponential growth is defined as Td = (log 2)Ts / log R [5] where Ts is the 

serial interval; a smaller Ts results in faster doubling at the same R. The question of whether the 

transmissibility of B1.617.2 is overhyped due to considerations other than scientific ones cannot be 

answered and is best not asked. 

§8. Model limitations and their consequences. Most of the limitations of the model have already been 

mentioned in Ref. [6]. They are 

• Assumption of constant cluster size 

• Assumption of constant cluster sequence 

• Use of roundoff 

• Decouplement of households from clusters 

• Ignoring the possibility of one person belonging to multiple clusters 

The ways of circumventing these assumptions have also been discussed in Ref. [6] – in short, we have to 

convert the deterministic model to a fully agent-based model. The additional part implementing contact 

tracing contains two assumptions which we have already discussed in §4. There is an approximation in the 

calculation of ρ since we assume that all the cluster members are being traced on the same day as the case 
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is found. In reality, the most immediate contacts might be identified first and the more distant ones later, 

easing the tracers’ job. On the average however, the total number of contacts needing to be traced over say 

a week or ten days will remain unchanged. Another approximation arises in our counting of immune 

clusters wi and Δwi. In this case, since our scheme preserves the total susceptible and immune populations 

at any time, errors will tend to average out. 

Once again, converting from the deterministic CST to a fully agent-based model will obviate the need for 

most or all of these assumptions. A more interesting question is : how might our assumptions influence the 

model results ? As a first test, we have varied the parameter which might be the most restrictive – the cluster 

sequence. Instead of [1; 3; 6; 8; 5; 1], we have now considered the sequence [1; 4; 13; 6]. This describes 

much faster intra-cluster transmission, corresponding to a more transmissible mutant. Concomitantly we 

have also increased the values of PU from 0·15 to 0·25 and mS from 2 to 3·5. Note that these values are 

hypothetical and we neither state nor intend to suggest that the percentage increases in transmissibility 

parameters are representative of B1.617.2 double mutant. In this case, we have run extensive simulations 

and found all the effects mentioned in §6. The parameter values at which the different behaviours occur 

are of course different, but that apart everything else is the same. We dispense with another plethora of 

Figures, and instead make the code available to whosoever wants it (see Declarations). 

A realistic society is expected to have a distribution of cluster sizes and sequences as well as transmission 

parameters, and not just constant values of all of them. At one end of the spectrum, college students will 

tend to have large clusters, high intra-cluster interaction resulting in a rapid sequence, as well as higher 

values of PU and mS arising from their active social lives (and possibly lack of caution). At the other end, 

retirees are expected to have small clusters, a less sharp cluster sequence and low PU and mS due to their 

relatively limited social lives as well as justified fears about the consequences of contracting the disease. In 

such a society, we expect some of the special effects to remain more or less as is and others to be altered.  

The critical mass effect ought to be robust because of its mechanism of action. With parameters in a 

dangerous region, when the college students are operating at the borderline of tracing capacity, cases in 

that sub-population will plateau; cases in less contagious sub-populations will also plateau or decay (recall 

that in CST model, the plateau is manifest in large regions of the parameter space). The students will be 

the first to cross the contact tracing threshold and activate the instability; cases arising there will then induce 

cases in the other sub-populations and cause them to follow suit as well. On the other hand, a distribution 

of cluster size and contagiousness will certainly blunt the edge of the knife. When an NPI is progressively 

relaxed, the critical parameter value for the college students will be lower than that for the retirees, and 

crossing that first cutoff alone will not initiate a wave in the whole population. For a mass transition from 

plateau to wave, we shall have to effect a larger change in parameters than Fig. 5 would imply. Like critical 

mass effect, hysteresis effect is again expected to be robust in a population with a distribution of cluster 

sizes and parameters, since it will apply individually to the various sub-populations. As we have mentioned 

in §7, demonstrations of the critical mass and hysteresis effects have indeed occurred many times in 

different parts of the globe. Finally, we mention that the consequences of errors arising from 

approximations in our implementation of the model (for instance, using the parameter kmax) will be no 

different from those of approximations in the model itself. 

§9. Early warning indicator. The complicated effects we have described in §6-7 are certainly capable 

of explaining the bewildering epidemic trajectories we are seeing all over the world. They do however raise 

the question, is everything upto chance ? Is there no way of opening up, assessing in real time whether 

there really is elevated risk of a wave and then rolling back if necessary before it is too late ? To prevent a 

wave, is our only option to follow a path of maximum caution although by now even the most law-abiding 

citizens are sick of COVID-appropriate behaviour ?  

A path of less caution can be followed only if there are early-warning indicators of a forthcoming wave, 

which can signal the imminency of the wave during the quiescent phase. For an alarm to be reliable, it 

must ‘go off’ every time a wave is really impending, and preferably not cry wolf when there is no danger. 

Indicators derived from disease trajectories alone are inadequate since (as we have seen above) the 

trajectories depend on too many things at once and mask important details of the processes through which 
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they were generated. Indeed, a detailed discussion of this point has been presented by Dablander et. al. 

[17] who conclude that many potential early warning indicators actually decrease rather than increasing 

before a wave, and hence are useless. 

In our analysis however, we have found one parameter which consistently appears to predict the onset of 

a wave. This is the capacity ratio ρ i.e. the ratio of the maximum contact tracing capacity of the city’s 

healthcare personnel to the actual number of contacts who are being traced per day. We have found that 

so long as ρ is strictly unity, there is no question of a wave, while if ρ becomes less than unity, then there is 

a very real threat (recall that ρ is constrained to a maximum value of unity by definition). To appreciate 

the role of this parameter, we go back to our understanding (§7) of a wave as a vicious circle between 

emerging cases and untraced clusters. While ρ = 1, all feasible contacts are getting traced, i.e. the number 

of potential contacts emerging per day is less than CTmax. This automatically puts a cap on the maximum 

number of daily cases. Hence, there is no question of a wave while ρ = 1. On the other hand, when ρ 

decreases below unity, there is a surplus of at large cases which kicks off the vicious circle. We expect that, 

during the initial phases at least, the surplus will be small – it will take some time for the feedback loop to 

amplify the untraced cases to a level where the growth becomes uncontained. During this time, the actual 

case counts will remain small but ρ will become less than unity, thus acting as an early warning indicator. 

To verify our hypothesis, we now present extensive simulation results. As a first example, we consider Fig. 

4. Here, the parameter value nS = 1800 generated a huge wave after a faux plateau, while if we reduce nS to 

1750 then we get the plateau only (note from Fig. 5-top that the knife-edge for this situation lies between 

1750 and 1800). In the below Figure, we show the epidemic history for the two situations respectively 

during the initial 120 days. We also show ρ as a blue line attaching to the right hand y-axis. 
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Figure 8 : The initial portions of case trajectories and capacity ratio as a function of time for two contrasting situations.  

 

Indeed, the case trajectories in the two panels look nearly identical. But while ρ for the top panel is unity 

almost throughout (the dip at around 30 days is related to the initial condition rather than the steady state 

dynamics), ρ for the bottom panel shows marked deviations which increase as time goes on. The bottom 

panel does show a very slight increasing trend superposed on the plateau (see again §7) but this can easily 

be missed or taken for an insignificant fluctuation. The fact that the absolute case counts are higher in the 

bottom panel than in the top is insignificant since a plateau is a plateau, and absolute case counts have no 

meaning. But the trend in ρ in the two plots is very different, and this difference is very significant as the 

subsequent evolution demonstrates (from Fig. 4 we can see a gradual rise in cases between day #120 and 

#150, and a meteoric rise thereafter). Taking cognizance of the decrease in ρ around day #100 however, if 

the public health authorities take action, then the horrors after day #150 can be entirely avoided.  

As a second example we consider the two situations of Fig. 7 which demonstrated the hysteresis effect. In 

both situations, the case counts initially increased after the intervention was applied; only in the adverse 

situation however was there a full-blown wave despite the intervention. Can the marker ρ again predict the 

difference ? 
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Figure 9 : Case trajectories and capacity ratio as a function of time for two contrasting situations. The red lines indicate 

the interventions, as in Fig. 7. We have shown only parts of the red lines so that they do not overlap with the blue line 

for ρ which has a jump exactly at the point of application of the intervention. 

 

You bet. When the intervention is timely, ρ goes up to unity immediately. There are just two isolated 

departures and that is it. The tracers isolate enough cases to starve the epidemic of fuel and it proceeds 

slowly but inexorably towards its end. When the intervention is late however, ρ climbs only to about 70 

percent, still leaving scope for a considerable number of untraced, at large cases. As the wave continues, ρ 

dips still further until the epidemic peaks on its own, ρ hits the ceiling and then the disease rapidly vanishes. 

As a third example, we consider the rogue mutant which has the cluster sequence [1; 4; 13; 6] and the 

values PU = 0·25 and mS = 3·5. We also increase CTmax to 100, both to change the parameter from Fig. 8 and 

also to incorporate the fact that a rogue mutant will need to be combated by a larger contact tracing force. 

Keeping P0 to P3 the same as before, when nS is varied, the knife-edge occurs between 750 and 800. In the 

latter case, there is a very pronounced demonstration of the critical mass effect. Below we plot the initial 

200 days of the case trajectories and ρ for these two values of nS. 
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Figure 10 : The initial portions of case trajectories and capacity ratio as a function of time for two contrasting situations. 

 

This is almost identical to what we saw in Fig. 8. In the subsequent evolution not shown in the Figure, the 

top panel proceeds almost unchanged to a cumulative caseload of 32,000 while the bottom panel takes off 

at around day #230 to reach a maximum daily rate of 2500 cases and a cumulative caseload of almost 

2,30,000. A difference with Fig. 8 is that ρ for the adverse situation here is higher than that in Fig. 8-bot. 

Due to higher transmissibility of the mutant however, this smaller surplus of at large cases is sufficient to 

create a situation from which there is no recovery. Also, CTmax itself is larger here, so a smaller percentage 

deviation from unity corresponds to a larger absolute count of untraced cases. For this reason, the only 

acceptable value for ρ is strictly unity and nothing less; this is not too stringent a condition since ρ cannot 

exceed 1 by definition. 

These three sets of simulations, together with the logic underlying its function, provide convincing evidence 

that the capacity ratio ρ indeed has the power to act as an early warning indicator of an imminent wave. A 

less-than-unity value of ρ is practically difficult to measure since the denominator nCT can only be estimated 

or calculated in this case (when nCT ≤ CTmax, it can of course be measured). When ρ < 1, what can be 

measured as a substitute is the ratio of cases who are self-reporting symptoms to those being identified in 

contact tracing drives. If this ratio increases, then trouble is indicated. Similarly, the average number of 

contacts being traced for each freshly reporting case can also be measured. By now, its value during 

quiescent periods is known; a lower ρ will correspond to a decrease of this number and signal the need for 
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more proactive measures. Finally, ρ can also be connected to the test positivity rate; for that we shall require 

data about the testing schedules of suspected contacts, which we do not have currently. Hence we leave 

this connection for a future study. 

§10. Public health implications. Public health policy decisions must be formulated on the basis of 

results which remain qualitatively unaffected by changes in parameter values or refinements in the model 

structure. The first such result is that SEC events activate the cryptogenic instability and can cause a high 

caseload. For this reason, size limits on such gatherings must be imposed and enforced. Since SEC events 

contribute a small fraction to population-averaged interactions, the social impact of such a move will be 

much less than that of say closure of restaurants and bars, where the transmission is primarily intra-cluster. 

Thus, public health messaging may focus on narrowing the scope of social interactions instead of reducing 

their frequency.  

The second robust conclusion is that contact tracing is of great importance in combating the spread of the 

disease. By preferentially isolating suspected cases, it can save mass isolations i.e. lockdowns and similar 

measures. Faster tracing with higher probability and higher capacity can lead to enormous socioeconomic 

gain with negligible disease cost. To facilitate the contact tracers’ job, people may be encouraged to keep 

diaries in which they make lists of every person with whom they have had close, unmasked interactions. 

Then, in case a person turns out positive, the entries for the last five or seven days in his/her diary may be 

used to access potential contacts quickly. These diaries might also be used to trace a person’s SEC 

transmissions and nip the seeded clusters in the bud. Compared with electronic contact tracing methods, 

this method has the benefit that one’s contacts are not logged unless one is actually suspected of exposure, 

and there is no question of the diaries being used for surveillance without one’s knowledge. A disease 

mitigation tool which supplements contact tracing is random testing i.e. testing of asymptomatic persons. 

Here we have not accounted for this intervention explicitly, but its effects can be analysed easily and the 

policy implemented as per cost and complexity considerations.  

An extensive contact tracing program might have an unpleasant corollary in that many people might be 

treated as potential cases and quarantined despite not actually having been exposed to the virus. In our 

example of §4, if Team is a Type 1 cluster then only Bravo, Charlie and Delta are actual cases while Echo 

through Xray are also grounded out of abundance of caution. Thus, there are more than six times as many 

quarantine orders issued as are necessary. For high-interaction persons like shopkeepers, such false alarms 

might be raised every few days. This will cause economic harm, undue mental stress as well as public lack 

of faith in the contact tracing system. To mitigate this, two options are available. The first is for 

asymptomatic suspected exposures to perform a daily self-test, the logistics of which as a quarantine 

substitute have been discussed in Ref. [18]. The second is to not ground the person entirely unless 

symptomatic but to ensure that over the next few days s/he follows 100 percent adherence to COVID-19 

protocols at work and essential activities, and refrains from inessential activities. Data from Cornell 

University’s extensive case surveillance network has not found even one instance of in-classroom viral 

transmission, suggesting that a ‘soft’ quarantine may be as effective at preventing transmission as a ‘hard’ 

one. 

The third conclusion which appears to be robust is that saturation of the contact tracing infrastructure 

might indicate the imminent arrival of a wave. When such saturation is observed, a rollback of reopening 

measures should be announced immediately and maintained until the strain on the contact tracers is eased. 

Augmenting the contact tracing capacity by hiring professional part-time and full-time tracers is a longer-

term solution which will enable reopening. 

§11. Conclusion and future directions. In this Article we have added contact tracing to the cluster 

seeding and transmission (CST) model of COVID-19 developed in Refs. [6,7]. We have found that by 

adding this feature, the model results become significantly more realistic. We have identified four effects – 

cryptogenic instability, critical mass effect, knife-edge effect and hysteresis effect – which make epidemic 

trajectories unpredictable and contribute to the perplexing variety of COVID-19 trajectories seen all over 

the world.  
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Then, we have tried to extract order from amidst this chaos. For this we have identified conclusions which 

are robust across parameter values and hold true in very general situations. The role of SEC events in 

spreading disease and the role of contact tracing in mitigating it belong to this class. Finally, we have 

proposed the capacity ratio ρ as an early warning indicator of an imminent wave – if this does turn out to 

be effective in reality, then we might all find collective peace of mind from the presence of a reliable advance 

detection system. 

There are at least two directions for future work. The first is theoretical and consists of a comprehensive 

mathematical analysis of the various effects we mentioned here. Such analysis is bound to reveal 

fascinating connections between epidemic spreading and other branches of science and engineering. The 

second direction is practical. Since many countries are now racing ahead with vaccination drives, our near-

term future plan has to be the analysis of this intervention. It is noteworthy that vaccination appears to be 

producing different kinds of results in different countries; part of this may be due to the different efficacies 

of the various vaccines in use while part may be due to the effects we have described here. Although 

COVID-19 is currently nowhere near elimination, there might still be hope in the longer term, when 

vaccines get developed with more durable and broad-spectrum immune responses. The neutralization of 

COVID-19 as a global threat, if at all possible, will have to be brought about through a combination of 

vaccination and public health efforts, and mathematical modeling will be essential to achieve their most 

effective synergy. 

---- o ---- o ---- o ----      ---- o ---- o ---- o ---- 
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